Linear Programming
Examples of linear programming problems: single source shortest paths,
maximum flow, minimum flow, multicommodity path.
For example:
A: amount of time spent on school work
B: amount of time spent on fun
C: amount of time spent on pay work
Maximize 24-A-B - C
given the constraints A+B + C £ 24, B +C ³8 and A ³ 0, B ³ 0, C ³ 0.
N
Linear function f(x1, x2, …, xN ) is a function in form f(x1, x2, …, xN) = å aixi
i=1
Linear constraints are linear inequalities and/or
linear equalities. For example, a-b
£ 4. We saw them in ch.24, when
we were solving the difference constraint problems.
A linear programming problem is the problem of either
minimizing or maximizing a linear function subject to a set of linear
constraints. The function that we are trying to maximize or minimize is called objective
function. A set of any values of variables that satisfies all constraints
of a linear program is called a feasible solution is. Since there are
many values possible, all solutions span a feasible region.
EmoticonEmoticon