Sunday 16 June 2013

Study Of Different Types Of Viruses, Threats, Attacks And Vulnerability



Types of viruses:-

1) Boot viruses: These viruses infect floppy disk boot records or master boot records in hard disks. They replace the boot record program (which is responsible for loading the operating system in memory) copying it elsewhere on the disk or overwriting it. Boot viruses load into memory if the computer tries to read the disk while it is booting.
Examples: Form, Disk Killer, Michelangelo, and Stone virus


2) Program viruses: These infect executable program files, such as those with extensions like .BIN, .COM, .EXE, .OVL, .DRV (driver) and .SYS (device driver). These programs are loaded in memory during execution, taking the virus with them. The virus becomes active in memory, making copies of itself and infecting files on disk.
Examples: Sunday, Cascade

3) Multipartite viruses: A hybrid of Boot and Program viruses. They infect program files and when the infected program is executed, these viruses infect the boot record. When you boot the computer next time the virus from the boot record loads in memory and then start infecting other program files on disk.
Examples: Invader, Flip, and Tequila

4) Stealth viruses: These viruses use certain techniques to avoid detection. They may either redirect the disk head to read another sector instead of the one in which they reside or they may alter the reading of the infected file’s size shown in the directory listing. For instance, the Whale virus adds 9216 bytes to an infected file; then the virus subtracts the same number of bytes (9216) from the size given in the directory.
Examples: Frodo, Joshi, Whale

5) Polymorphic viruses: A virus that can encrypt its code in different ways so that it appears differently in each infection. These viruses are more difficult to detect.
Examples: Involuntary, Stimulate, Cascade, Phoenix, Evil, Proud, Virus 101

6) Macro Viruses: A macro virus is a new type of computer virus that infects the macros within a document or template. When you open a word processing or spreadsheet document, the macro virus is activated and it infects the Normal template (Normal.dot)-a general purpose file that stores default document formatting settings. Every document you open refers to the Normal template, and hence gets infected with the macro virus. Since this virus attaches itself to documents, the infection can spread if such documents are opened on other computers.
Examples: DMV, Nuclear, Word Concept.

7) Active X:  ActiveX and Java controls will soon be the scourge of computing. Most people do not know how to control there web browser to enable or disable the various functions like playing sound or video and so, by default, leave a nice big hole in the security by allowing applets free run into there machine. There has been a lot of commotion behind this and with the amount of power that JAVA imparts; things from the security angle seem a bit gloom.

Threats to Computer Security

Computer systems are vulnerable to many threats that can inflict various types of damage resulting in significant losses. This damage can range from errors harming database integrity to fires destroying entire computer centers. Losses can stem, for example, from the actions of supposedly trusted employees defrauding a system, from outside hackers, or from careless data entry clerks. Precision in estimating computer security-related losses is not possible because many losses are never discovered, and others are "swept under the carpet" to avoid unfavorable publicity. The effect of various threats varies considerably: some affect the confidentiality or integrity of data while others affect the availability of a system.

1. Errors and Omissions
Errors and omissions are an important threat to data and system integrity. These errors are caused not only by data entry clerks processing hundreds of transactions per day, but also by all types of users who create and edit data. Many programs, especially those designed by users for personal computers, lack quality control measures. However, even the most sophisticated programs cannot detect all types of input errors or omissions. A sound awareness and training program can help an organization reduce the number and severity of errors and omissions.
Users, data entry clerks, system operators, and programmers frequently make errors that contribute directly or indirectly to security problems. In some cases, the error is the threat, such as a data entry error or a programming error that crashes a system. In other cases, the errors create vulnerabilities. Errors can occur during all phases of the systems life cycle.

2. Fraud and Theft
Computer systems can be exploited for both fraud and theft both by "automating" traditional methods of fraud and by using new methods. For example, individuals may use a computer to skim small amounts of money from a large number of financial accounts, assuming that small discrepancies may not be investigated. Financial systems are not the only ones at risk. Systems that control access to any resource are targets (e.g., time and attendance systems, inventory systems, school grading systems, and long-distance telephone systems). Computer fraud and theft can be committed by insiders or outsiders. Insiders (i.e., authorized users of a system) are responsible for the majority of fraud.
Since insiders have both access to and familiarity with the victim computer system (including what resources it controls and its flaws), authorized system users are in a better position to commit crimes. Insiders can be either general users (such as clerks) or technical staff members. An organization's former employees, with their knowledge of an organization's operations, may also pose a threat, particularly if their access is not terminated promptly.

3. Employee Sabotage 
Employees are most familiar with their employer's computers and applications, including knowing what actions might cause the most damage, mischief, or sabotage. The downsizing of organizations in both the public and private sectors has created a group of individuals with organizational knowledge, who may retain potential system access (e.g., if system accounts are not deleted in a timely manner). The number of incidents of employee sabotage is believed to be much smaller than the instances of theft, but the cost of such incidents can be quite high.

Common examples of computer-related employee sabotage include:
1. destroying hardware or facilities,
2. planting logic bombs that destroy
3. programs or data,
4. entering data incorrectly,
5. "crashing" systems,
6. deleting data,
7. holding data hostage, and
8. Changing data.

4. Loss of Physical and Infrastructure Support 
The loss of supporting infrastructure includes power failures (outages, spikes, and brownouts), loss of communications, water outages and leaks, sewer problems, lack of transportation services, fire, flood, civil unrest, and strikes.

5. Malicious Hackers 
The term malicious hackers, sometimes called crackers, refer to those who break into computers without authorization. They can include both outsiders and insiders. Much of the rise of hacker activity is often attributed to increases in connectivity in both government and industry. One 1992 study of a particular Internet site (i.e., one computer system) found that hackers attempted to break in at least once every other day. The hacker threat should be considered in terms of past and potential future damage. Although current losses due to hacker attacks are significantly smaller than losses due to insider theft and sabotage, the hacker problem is widespread and serious.

6. Industrial Espionage 
Industrial espionage is the act of gathering proprietary data from private companies or the government for the purpose of aiding another company (ies). Industrial espionage can be perpetrated either by companies seeking to improve their competitive advantage or by governments seeking to aid their domestic industries. Foreign industrial espionage carried out by a government is often referred to as economic espionage. Since information is processed and stored on computer systems, computer security can help protect against such threats; it can do little, however, to reduce the threat of authorized employees selling that information.

7. Malicious Code 
Malicious code refers to viruses, worms, Trojan horses, logic bombs, and other "uninvited" software. Sometimes mistakenly associated only with personal computers, malicious code can attack other platforms. Actual costs attributed to the presence of malicious code have resulted primarily from system outages and staff time involved in repairing the systems. Nonetheless, these costs can be significant.
Malicious Software: A Few Key Terms

Virus: A code segment that replicates by attaching copies of itself to existing executables. The new copy of the virus is executed when a user executes the new host program. The virus may include an additional "payload" that triggers when specific conditions are met. For example, some viruses display a text string on a particular date. There are many types of viruses, including variants, overwriting, resident, stealth, and polymorphic.

Trojan Horse: A program that performs a desired task, but that also includes unexpected (and undesirable) functions. Consider as an example an editing program for a multiuser system. This program could be modified to randomly delete one of the users' files each time they perform a useful function (editing), but the deletions are unexpected and definitely undesired!
Worm: A self-replicating program that is self-contained and does not require a host program. The program creates a copy of itself and causes it to execute; no user intervention is required. Worms commonly use network services to propagate to other host systems.

8. Threats to Personal Privacy 
The accumulation of vast amounts of electronic information about individuals by governments, credit bureaus, and private companies, combined with the ability of computers to monitor, process, and aggregate large amounts of information about individuals have created a threat to individual privacy. The possibility that all of this information and technology may be able to be linked together has arisen as a specter of the modern information age.

Vulnerability 
In computer security, the term vulnerability is a weakness which allows an attacker to reduce a system's Information Assurance. Vulnerability is the intersection of three elements: a system susceptibility or flaw, attacker access to the flaw, and attacker capability to exploit the flaw. To be vulnerable, an attacker must have at least one applicable tool or technique that can connect to a system weakness. In this frame, vulnerability is also known as the attack surface.
A security risk may be classified as vulnerability. Vulnerability with one or more known instances of working and fully-implemented attacks is classified as an exploitable vulnerability - a vulnerability for which an exploit exists. The window of vulnerability is the time from when the security hole was introduced or manifested in deployed software, to when access was removed, a security fix was available/deployed, or the attacker was disabled.

Causes
Complexity: Large, complex systems increase the probability of flaws and unintended access points
Familiarity: Using common, well-known code, software, operating systems, and/or hardware increases the probability an attacker has or can find the knowledge and tools to exploit the flaw
Connectivity: More physical connections, privileges, ports, protocols, and services and time each of those are accessible increase vulnerability
Password management flaws: The computer user uses weak passwords that could be discovered by brute force. The computer user stores the password on the computer where a program can access it. Users re-use passwords between many programs and websites.
Fundamental operating system design flaws: The operating system designer chooses to enforce sub optimal policies on user/program management. For example operating systems with policies such as default permit grant every program and every user full access to the entire computer. This operating system flaw allows viruses and malware to execute commands on behalf of the administrator.
Internet Website Browsing: Some internet websites may contain harmful Spyware or Adware that can be installed automatically on the computer systems. After visiting those websites, the computer systems become infected and personal information will be collected and passed on to third party individuals.
Software bugs: The programmer leaves an exploitable bug in a software program. The software bug may allow an attacker to misuse an application.
Unchecked user input: The program assumes that all user input is safe. Programs that do not check user input can allow unintended direct execution of commands or SQL statements (known as Buffer overflows, SQL injection or other non-validated inputs).



EmoticonEmoticon